Expansion of Tumor-Infiltrating Lymphocytes (TIL) Using Static Bag for the Clinical Manufacturing Rapid Expansion Protocol (REP) Process

Kenneth Onimus, Adrian Wells, Nermin Gorges, Courtney Herman, Viktoria Gontcharova, Joe Wypych, Arvind Natarajan, Anand Veerapathran

Iovance Biotherapeutics, Inc., 99 Skyway Road, Suite 150, San Carlos, CA 94070

Introduction

Background

- Lymphocar (LN-149) and LN-145, adoptive cell therapies using autologous tumor infiltrating lymphocytes (TIL), have demonstrated encouraging efficacy with acceptable safety in a variety of tumor types.

- The Tumilloque Gen 2 clinical manufacturing process uses gas-permeable rapid expansion bioreactors (G-Rex®, Wilson Wolf, Sent In., MN) for T-cell expansion.

- Static gas-permeable cell culture bags (EXP-Pak®, ChemoMedical, Waltham, MA) are alternative bioreactors that have been used for clinical manufacturing of T-cells.

- T-cell product characteristics were compared after expansion at small- and full-scale using G-Rex bioreactors and EXP-Pak bags.

Methods

Study Objectives

- To determine the feasibility of using static gas-permeable cell culture bags to expand TIL for the clinical manufacturing rapid expansion protocol (REP).

- To characterize the final harvested product for the following quality attributes:
 1. Dose: Cell count and % viability
 2. Identity: % CD3+CD8+, % CD25+ and % CD38+.
 4. Phenotype: Memory, activation, exhaustion, and maturity status
 5. Reduction OXIDATION (REDOX): T-cell proliferation capacity, metabolic products, apoptosis, cell-cycle analysis, and mitochondrial function.
 6. T-cell Receptor (TCR) Clonotypes: Unique CDR3 counts and frequency distribution of the TIL product.

Proposed TIL Manufacturing Process Using EXP-Pak Bags

Figure 1. Gen 2 TIL Manufacturing Process and Experiment Design

Results

Figure 2. Viable Cell Dose, Purity, Identity, and Potency of the TIL Product

Figure 3. TIL Purity, Identity, Memory, and Differentiation

Discussion

- The final harvested TIL product met the release criteria for cell dose, purity (% viability), identity (%CD3+CD8+), and potency (IFN-γ release) in the supernatant.

- All of the harvested TIL products met the release criteria for viable cell dose, purity (% viability), identity (%CD4+CD5+), and potency (IFN-γ release).

- No difference was observed in activation and exhaustion status TIL between the G-Rex and EXP-Pak conditions.

Figure 5. Cellular REDOX State was Measured by Antibody, Cell Cycle, Proliferation, Metabolic By-Product, and Glucose Uptake

Figure 6. Mitochondrial Function of TIL

- In both G-Rex and EXP-Pak conditions, low contaminating non-T cells (B cells, monocytes) infected with human herpesvirus 8- or CMV-positive; immune populations were observed.

- T-cell proliferation was determined using student’s unpaired t-test (*, p-value) compared between the G-Rex and EXP-Pak conditions.

- T-cell proliferation was determined using student’s unpaired t-test (*, p-value) compared between the G-Rex and EXP-Pak conditions.

- No difference was observed in activation and exhaustion status TIL between the G-Rex and EXP-Pak conditions.

- The final T-cell product generated in EXP-Pak bags did not differ in growth, functional viability, or phenotype compared to TIL manufactured in G-Rex flasks.

- Frequency distribution of the top 20 clones was similar between G-Rex and EXP-Pak conditions.

Conclusions

- The final T-cell product generated in EXP-Pak bags did not differ in growth, functional viability, or phenotype compared to TIL manufactured in G-Rex flasks.

- T-cell redox state and mitochondrial function were comparable between both conditions.

- TCR Vβ clonal diversity, sequence, and frequency of all comparability samples showed a high degree of similarity between both conditions.

- These data support further evaluation of EXP-Pak or similar static gas-permeable cell culture bags for potential use in clinical and commercial TIL cell therapy manufacturing applications.

For more information, please contact Anand Veerapathran
Anand.Veerapathran@iovance.com