Lifileucel (LN-144), a Cryopreserved Autologous Tumor Infiltrating Lymphocyte (TIL) Therapy in Patients with Advanced Melanoma: Evaluation of Impact of Prior Anti–PD-1 Therapy

1The Royal Marsden Hospital NHS Foundation Trust, London, UK
2H. Lee Moffitt Cancer Center, Tampa, FL, USA
3James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
4UPMC Hillman Cancer Center, Pittsburgh, PA, USA
5Yale School of Medicine and Smilow Cancer Center, Yale New Haven Hospital, New Haven, CT
6University of Florida Health Cancer Center, Orlando Health, Orlando, FL, USA
7University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
8University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
9University of Szeged Albert Szent-Györgyi Health Center, Szeged, HU
10Atlantic Health System Cancer Care, Morristown, NJ, USA
11Clinica Universidad de Navarra, Pamplona, ES
12Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
13Mount Sinai Medical Center, Miami Beach, FL, USA
14Iovance Biotherapeutics, Inc., San Carlos, CA, USA
15The Angeles Clinic and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, USA
16The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
06 June 2021
Background

• Currently, no treatment is approved for patients with advanced melanoma whose disease progresses while on or after treatment with ICI and BRAF/MEK inhibitors

• In patients with advanced melanoma who are either primary refractory or develop resistance to ICI, retreatment with ICI or treatment with chemotherapy yields a poor response rate; chemotherapy offers 4-10% \(^1,2\) with median OS of only 7–8 months \(^3,4\)

• Lifileucel is an adoptive cell therapy using autologous TIL that has shown efficacy and durable long-term responses in patients with advanced melanoma who progress on or after anti–PD-1 therapy \(^5\)

• We present 33-month follow-up data from C-144-01 (NCT02360579), a global, Phase 2, open-label, multicohort, multicenter study, and examine the impact of prior anti–PD-1 / anti–PD-L1 use on duration of response of lifileucel

C-144-01 Study Design

Phase 2, multicenter study to assess the efficacy and safety of autologous TIL (lifileucel) for treatment of patients with metastatic melanoma (NCT02360579)

Cohort 1
Non-cryopreserved TIL product (Gen 1)
N=30
Closed to enrollment

Cohort 2
Cryopreserved TIL product (Gen 2)
N=60
Closed to enrollment

Cohort 3
TIL re-treatment
N=10

Cohort 4 (Pivotal)
Cryopreserved TIL product (Gen 2)
N=75
Closed to enrollment

Cohort 2 Endpoints
- Primary: Efficacy per investigator-assessed ORR using RECIST 1.1 response criteria
- Secondary: Safety and additional parameters of efficacy

Key Eligibility Criteria
- Radiographic confirmation of progression
- One tumor lesion resectable for TIL generation (~1.5 cm in diameter) and ≥1 target tumor lesion for RECIST 1.1 response assessment
- Age ≥18 years at the time of consent
- ECOG performance status of 0–1

Methods
- Patients were enrolled from April 2017 to January 2019 at 26 sites across the US and EU
- Concomitant anticancer therapy was not permitted
- Imaging-evaluable disease was required
- All responses required confirmation
- Data cutoff: 22 April 2021

Patient Population
Unresectable or metastatic melanoma treated with ≥1 prior systemic therapy including a PD-1–blocking antibody and, if BRAF V600 mutation positive, a BRAFi ± MEKi
Patient Journey and TIL Manufacturing

1. Patient Intake
2. Tumor Tissue Procurement
 - Surgical resection of a tumor lesion (~1.5 cm in diameter)
 - Shipped to a Central GMP facility

 Tumor resection sites include skin, lymph nodes, liver, lung, peritoneal, musculoskeletal, breast, and other organs

3. Non-myeloablative Lymphodepletion
 - Cyclophosphamide followed by fludarabine

4. Lifileucel Infusion
 - One time treatment
 - Lifileucel is a rejuvenated and expanded TIL product

5. IL-2 Administration
 - Up to 6 doses

6. Discharge

Cryopreserved product, process time: 22 Days

GMP, good manufacturing practices; IL-2, interleukin-2; NMA-LD, non-myeloablative lymphodepletion; TIL, tumor infiltrating lymphocytes.
Baseline Patient and Disease Characteristics

Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N=66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>27 (41)</td>
</tr>
<tr>
<td>Male</td>
<td>39 (59)</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>55</td>
</tr>
<tr>
<td>Min, max</td>
<td>20, 79</td>
</tr>
<tr>
<td>Prior Therapies, n (%)</td>
<td></td>
</tr>
<tr>
<td>Mean number of prior therapies</td>
<td>3.3</td>
</tr>
<tr>
<td>Anti–PD-1 / Anti–PD-L1</td>
<td>66 (100)</td>
</tr>
<tr>
<td>Anti–CTLA-4</td>
<td>53 (80)</td>
</tr>
<tr>
<td>Anti–PD-1 + Anti–CTLA-4</td>
<td>34 (52)</td>
</tr>
<tr>
<td>BRAFi / MEKi</td>
<td>15 (23)</td>
</tr>
<tr>
<td>Progressive Disease for ≥1 Prior Therapy, n (%)</td>
<td></td>
</tr>
<tr>
<td>Anti–PD-1 / Anti–PD-L1</td>
<td>65 (99)</td>
</tr>
<tr>
<td>Anti–CTLA-4</td>
<td>41 (77)*</td>
</tr>
<tr>
<td>ECOG Performance Status, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>37 (56)</td>
</tr>
<tr>
<td>1</td>
<td>29 (44)</td>
</tr>
</tbody>
</table>

Patients had:
- Mean of 3.3 prior therapies, ranging from 1–9
- High tumor burden at baseline

Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N=66</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF Mutation Status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Mutated V600E or V600K</td>
<td>17 (26)</td>
</tr>
<tr>
<td>Wild type</td>
<td>45 (68)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Tumor PD-L1 Expression, n (%)</td>
<td></td>
</tr>
<tr>
<td>PD-L1 positive (TPS ≥5%)</td>
<td>23 (35)</td>
</tr>
<tr>
<td>PD-L1 negative (TPS <5%)</td>
<td>26 (39)</td>
</tr>
<tr>
<td>LDH, n (%)</td>
<td></td>
</tr>
<tr>
<td>≤ULN</td>
<td>39 (59)</td>
</tr>
<tr>
<td>>1 to 2 × ULN</td>
<td>19 (29)</td>
</tr>
<tr>
<td>>2 × ULN</td>
<td>8 (12)</td>
</tr>
<tr>
<td>Target Lesions Sum of Diameter (mm)</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>106 (71)</td>
</tr>
<tr>
<td>Min, max</td>
<td>11, 343</td>
</tr>
<tr>
<td>Number of Target and Non-Target Lesions</td>
<td></td>
</tr>
<tr>
<td>>3, n (%)</td>
<td>51 (77)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6 (2.7)</td>
</tr>
<tr>
<td>Liver and / or brain lesions, n (%)</td>
<td>28 (42)</td>
</tr>
</tbody>
</table>

Presented By: James M. G. Larkin, MD, FRCP, PhD
Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.
Safety

AEs Over Time

![Graph showing AEs over time](image)

TEAEs Reported in ≥30% of Patients

<table>
<thead>
<tr>
<th>Preferred Term, n (%)</th>
<th>Any Grade</th>
<th>Grade 3/4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TEAE*</td>
<td>66 (100)</td>
<td>64 (97.0)</td>
<td>2 (3.0)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>59 (89.4)</td>
<td>54 (81.8)</td>
<td>0</td>
</tr>
<tr>
<td>Chills</td>
<td>53 (80.3)</td>
<td>4 (6.1)</td>
<td>0</td>
</tr>
<tr>
<td>Anemia</td>
<td>45 (68.2)</td>
<td>37 (56.1)</td>
<td>0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>39 (59.1)</td>
<td>11 (16.7)</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>37 (56.1)</td>
<td>26 (39.4)</td>
<td>0</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>36 (54.5)</td>
<td>36 (54.5)</td>
<td>0</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>30 (45.5)</td>
<td>23 (34.8)</td>
<td>0</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>28 (42.4)</td>
<td>23 (34.8)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>26 (39.4)</td>
<td>1 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>Hypotension</td>
<td>24 (36.4)</td>
<td>7 (10.6)</td>
<td>0</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>23 (34.8)</td>
<td>21 (31.8)</td>
<td>0</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>23 (34.8)</td>
<td>1 (1.5)</td>
<td>0</td>
</tr>
</tbody>
</table>

*TEAEs refer to all AEs starting on or after the first dose date of TIL for up to 30 days; patients with multiple events for a given preferred term are counted only once using the maximum grade under each preferred term.

†Of 2 Grade 5 events, 1 was due to intra-abdominal hemorrhage considered possibly related to TIL, and 1 was due to acute respiratory failure assessed per investigator as not related to TIL.

AE, adverse event; D, day; IL-2, interleukin-2; M, month; TEAE, treatment-emergent adverse event; TIL, tumor infiltrating lymphocytes.

Median number of IL-2 doses administered was 5

Presented By: James M. G. Larkin, MD, FRCP, PhD #ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.
Objective Response Rate

<table>
<thead>
<tr>
<th>Response, n (%)</th>
<th>N=66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Response Rate</td>
<td>24 (36.4)</td>
</tr>
<tr>
<td>Complete response</td>
<td>3 (4.5)</td>
</tr>
<tr>
<td>Partial response</td>
<td>21 (31.8)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>29 (43.9)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>9 (13.6)</td>
</tr>
<tr>
<td>Non-evaluable*</td>
<td>4 (6.1)</td>
</tr>
<tr>
<td>Disease control rate</td>
<td>53 (80.3)</td>
</tr>
</tbody>
</table>

Median Duration of Response

<table>
<thead>
<tr>
<th>Min, max (months)</th>
<th>Not Reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>38.5+</td>
</tr>
</tbody>
</table>

- Mean number of TIL cells infused: 27.3×10^9

After a median study follow-up of 33.1 months, **median DOR was not reached** (range 2.2, 38.5+ months)

*Not evaluable due to not reaching first assessment.

DOR, duration of response; SOD, sum of diameters; TIL, tumor-infiltrating lymphocytes.
81% (50/62) of patients had a reduction in tumor burden

11 patients (17.7%) had further SOD reduction since April 2020 data cut
Time to Response for Evaluable Patients (PR or Better)

- 79% of responders received prior ipilimumab
 - 46% of responders received prior anti–PD-1 / anti–CTLA-4 combination

Responses continued to deepen over time
- 1 PR converted to CR after 24 months post-lifileucel

*BOR is best overall response on prior anti–PD-1 / anti–PD-L1 immunotherapy.
†Patient 22 BOR is PR.
BOR, best overall response; CR, complete response; CTLA-4, cytotoxic T-lymphocyte antigen-4; PD, progressive disease; PD-1, programmed cell death protein-1; PR, partial response; SD, stable disease; TIL, tumor infiltrating lymphocytes; TPS, tumor proportion score; U, unknown.
Early and Sustained CR in a Patient with Multiple Failed Prior Therapies

Patient Narrative

- 44-year-old male
- Initial diagnosis in 2016
- Superficial spreading melanoma
- Prior systemic therapies:
 - Ipilimumab + nivolumab
 - Dabrafenib + trametinib
 - TLR9 agonist + pembrolizumab
 - TVEC + pembrolizumab
- BOR to all prior therapies (including anti–PD-1) was PD
 - Cumulative duration on prior anti–PD-1 was 3.1 months
- Achieved PR at Day 42 and converted to CR on Day 84
 - CR is ongoing

BOR, best overall response; CR, complete response; CTLA-4, cytotoxic T-lymphocyte antigen-4; PD, progressive disease; PD-1, programmed cell death protein-1; PD-L1, programmed death ligand-1; PR, partial response; TIL, tumor-infiltrating lymphocytes; TPS, tumor proportion score; TVEC, talimogene laherparepvec; U, unknown.

Presented By: James M. G. Larkin, MD, FRCP, PhD

Permission required for reuse.
Site of Tumor Resection and Infused Cell Dose

Total Cell Dose

Target lesion SOD reductions were seen across the range of total TIL cell doses and CD4⁺/CD8⁺ TIL ratios.

Appropriate amount of TIL was manufactured regardless of tumor resection site.

SOD, sum of diameters; TIL, tumor infiltrating lymphocytes.
Univariable Analyses: ORR of Lifileucel

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>n/N</th>
<th>ORR</th>
<th>95% CI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Age Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>24/66</td>
<td>36.4</td>
<td>(24.9, 49.1)</td>
</tr>
<tr>
<td>≥65</td>
<td>19/52</td>
<td>36.5</td>
<td>(23.6, 51.0)</td>
</tr>
<tr>
<td>Prior CTLA-4 Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>19/53</td>
<td>35.8</td>
<td>(23.1, 50.2)</td>
</tr>
<tr>
<td>No</td>
<td>5/13</td>
<td>38.5</td>
<td>(13.9, 68.4)</td>
</tr>
<tr>
<td>BRAF Mutation Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutated (V600E or K)</td>
<td>7/17</td>
<td>41.2</td>
<td>(18.4, 67.1)</td>
</tr>
<tr>
<td>Non-Mutated</td>
<td>17/49</td>
<td>34.7</td>
<td>(21.7, 49.6)</td>
</tr>
<tr>
<td>Baseline ECOG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16/37</td>
<td>43.2</td>
<td>(27.1, 60.5)</td>
</tr>
<tr>
<td>≥1</td>
<td>8/29</td>
<td>27.6</td>
<td>(12.7, 47.2)</td>
</tr>
<tr>
<td>Baseline LDH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ULN</td>
<td>15/39</td>
<td>38.5</td>
<td>(23.4, 55.4)</td>
</tr>
<tr>
<td>>ULN</td>
<td>9/27</td>
<td>33.3</td>
<td>(16.5, 54.0)</td>
</tr>
<tr>
<td>Baseline Brain/Liver Lesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9/28</td>
<td>32.1</td>
<td>(15.9, 52.4)</td>
</tr>
<tr>
<td>No</td>
<td>15/38</td>
<td>39.5</td>
<td>(24.0, 56.6)</td>
</tr>
<tr>
<td>Cumulative Duration on Anti–CTLA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤Median (2.10 mo)</td>
<td>13/29</td>
<td>44.8</td>
<td>(26.4, 64.3)</td>
</tr>
<tr>
<td>>Median (2.10 mo)</td>
<td>6/24</td>
<td>25.0</td>
<td>(9.8, 46.7)</td>
</tr>
<tr>
<td>Cumulative Duration on Anti–PD-1/PD-L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤Median (5.06 mo)</td>
<td>14/33</td>
<td>42.4</td>
<td>(25.5, 60.8)</td>
</tr>
<tr>
<td>>Median (5.06 mo)</td>
<td>10/33</td>
<td>30.3</td>
<td>(15.6, 48.7)</td>
</tr>
<tr>
<td>Time from Stop of Anti–PD-1/PD-L1 to TIL infusion</td>
<td>12/33</td>
<td>36.4</td>
<td>(20.4, 54.9)</td>
</tr>
<tr>
<td>≤Median (4.76 mo)</td>
<td>12/33</td>
<td>36.4</td>
<td>(20.4, 54.9)</td>
</tr>
<tr>
<td>>Median (4.76 mo)</td>
<td>12/33</td>
<td>36.4</td>
<td>(20.4, 54.9)</td>
</tr>
<tr>
<td>Baseline Target Lesion SOD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><70 mm</td>
<td>14/26</td>
<td>53.8</td>
<td>(33.4, 73.4)</td>
</tr>
<tr>
<td>≥70 mm</td>
<td>10/40</td>
<td>25.0</td>
<td>(12.7, 41.2)</td>
</tr>
</tbody>
</table>

*95% CI is calculated using the Clopper-Pearson Exact test.

ORR was not predicted by any patient or clinical characteristics analyzed, including:

- Baseline LDH (≤ULN vs >ULN)
- Baseline ECOG performance status (0 vs ≥1)
- Baseline brain / liver lesions (yes vs no)
- Cumulative duration on anti–CTLA-4 (≤median vs >median)
- Cumulative duration on anti–PD-1 / anti–PD-L1 (≤median vs >median) in a post–PD-1 patient population
Univariable Analyses*: DOR of Lifileucel

Parameter	Subgroup A vs B	N in Subgroup A	N in Subgroup B	HR (95% CI)	Subgroup A Better	Subgroup B Better
Age Group | <65 vs ≥65 | 19 | 5 | 0.527 (0.136, 2.046) | |
Prior CTLA-4 Use | Yes vs No | 19 | 5 | 1.320 (0.280, 6.233) | |
BRAF Mutation Status | Yes vs No | 7 | 17 | 0.845 (0.218, 3.278) | |
Baseline ECOG | 0 vs ≥1 | 16 | 8 | 1.079 (0.279, 4.179) | |
Baseline LDH | ≤ULN vs >ULN | 15 | 9 | 0.393 (0.113, 1.364) | |
Baseline Brain/Liver Lesion | Yes vs No | 9 | 15 | 1.776 (0.513, 6.154) | |
Cumulative Duration on Anti–CTLA-4 | ≤Median (2.10m) vs >Median | 13 | 6 | 1.743 (0.350, 8.664) | |
Cumulative Duration on Anti–PD-1/PD-L1 | ≤Median (5.06m) vs >Median | 14 | 10 | 0.218 (0.056, 0.854) | |
Baseline Target Lesion SOD | <70mm vs ≥70mm | 14 | 10 | 2.083 (0.537, 8.079) | |

*Univariable Cox proportional hazards regression model was used to estimate hazard ratios with 95% confidence intervals between subgroups on DOR.

Although cumulative duration on prior anti–PD-1 / anti–PD-L1 was not associated with achieving a response to lifileucel (ORR), it was associated with DOR.
Multivariable Model: Independent Predictors for DOR of Lifileucel

- Variables from the univariable analyses were examined using the best subset approach.
- Two parameters were identified:
 - Baseline LDH
 - Cumulative duration of prior anti–PD-1 / anti–PD-L1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comparison</th>
<th>Responders (N=24)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline LDH</td>
<td>≤ULN vs >ULN</td>
<td>HR (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.201 (0.040, 0.996)</td>
<td>0.049</td>
</tr>
<tr>
<td>Cumulative duration on prior anti–PD-1 / anti–PD-L1</td>
<td>For each 3-month decrease in exposure to prior anti–PD-1 / anti–PD-L1</td>
<td>0.715 (0.518, 0.987)</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>For each 6-month decrease in exposure to prior anti–PD-1 / anti–PD-L1</td>
<td>0.511 (0.268, 0.974)</td>
<td></td>
</tr>
</tbody>
</table>

For each 6-month decrease in exposure to prior anti–PD-1 / anti–PD-L1, the median DOR to lifileucel will be nearly doubled†

*Cox proportional hazards regression model.
†Assuming the data follow exponential distribution.
DOR, duration of response; HR, hazard ratio; LDH, lactate dehydrogenase; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand-1; ULN, upper limit of normal.
Conclusions

• In heavily pretreated patients with advanced or metastatic melanoma who progressed on or after multiple prior therapies, including anti–PD-1 / anti–PD-L1 and BRAF/MEK inhibitors (if BRAF V600 mutant), lifileucel treatment resulted in:
 – 36.4% ORR
 – **Median DOR not reached at median 33.1 months of study follow-up**

• Responses deepened over time:
 – 11 patients (17.7%) demonstrated further reduction in SOD since April 2020 datacut
 – 1 patient converted from PR to CR at 24 months post lifileucel infusion

• Prior anti–PD-1 therapy:
 – Shorter duration of prior anti–PD-1 therapy maximizes DOR to lifileucel treatment
 – All newly diagnosed patients should be closely monitored for progression on anti–PD-1 therapy
 – **Early intervention with lifileucel at the time of initial progression on anti–PD-1 agents may maximize benefit**
Acknowledgments

Thank you to all of the patients and their families who participated in this study

C-144-01 Cohort 2 Investigators

1. Ana Arance Fernandez, MD, PhD
2. Hendrik-Tobias Arkenau, MD, PhD
3. Christophe Bedane, MD
4. Jason A. Chesney, MD, PhD
5. Daniel Cho, MD
6. Pippa Corrie, PhD
7. Brendan D. Curti, MD
8. Mike Cusnir, MD
9. Stephane Dalle, MD, PhD
10. Gregory Daniels, MD, PhD
11. Evidio Domingo-Musibay, MD
12. Marc Ernstoff, MD
13. Miguel Fernandez de Sanmamed, MD, PhD
14. Omid Hamid, MD
15. Amy Harker-Murray
16. Nikhil I. Khushalani, MD
17. Kevin Kim, MD
18. John M. Kirkwood, MD
19. Harriet M. Kluger, MD
20. James G. Larkin, MD, PhD
21. Karl D. Lewis, MD
22. Jose Lutzyk, MD
23. Salvador Martín-Algarra, MD, PhD
24. Theresa Medina, MD
25. Judit Oláh, MD, DSc
26. Angela Orcurto, MD

Lovance Contributors

1. Cecile Chartier
2. Maria Fardis
3. Friederich Graf Finckenstein
4. Madan Jagasia
5. Xueying Ji
6. Amanda Kelly
7. Huling Li
8. Harry Qin
9. Devyani Ray
10. Wen Shi
11. Giri Sulur
12. Toshimi Takamura
13. Renee Xiao Wu

1. Hospital Clinic de Barcelona, Barcelona, Spain
2. Sarah Cannon Research Institute UK, London, UK
3. Hospital Dupuytren, Aquitane, France
4. James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
5. Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
6. Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Cambridge, UK
7. Earle A. Chiles Research Institute at Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, OR, USA
8. Mount Sinai Comprehensive Cancer Center, Miami, FL, USA
9. Centre Hospitalier Lyon Sud, Rhône-Alpes, France
10. University of California San Diego Moores Cancer Center, La Jolla, CA, USA
11. Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
12. Roswell Park Cancer Institute, Buffalo, NY, USA
13. Clínica Universidad de Navarra, Pamplona, Spain
14. The Angeles Clinic and Research Institute, A Cedars Sinai Affiliate, Los Angeles, CA, USA
15. Medical College of Wisconsin, Milwaukee, WI, USA
16. H. Lee Moffitt Cancer Center, Tampa, FL, USA
17. California Pacific Medical Center, San Francisco, CA, USA
18. Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
19. Yale University School of Medicine, Smilow Cancer Center, New Haven Hospital, New Haven, CT, USA
20. Royal Marsden NHS Foundation Trust, London, UK
21. University of Colorado Cancer Center - Anschutz Medical Campus, Aurora, CO, USA
22. University of Szeged - Albert Szent-Györgyi Health Center, Szeged, Hungary
23. Centre Hospitalier Universitaire Vaudois Lausanne, Lausanne, Switzerland
24. Virginia Commonwealth University, Richmond, VA, USA
25. University of Florida Health Cancer Center at Orlando Health, Orlando, FL, USA
26. Atlantic Health System Cancer Care, Morristown, NJ, USA

This study is sponsored by Iovance Biotherapeutics, Inc. (San Carlos, CA). Graphic support was provided by Cognition Studio, Inc. (Seattle, WA) and funded by Iovance.

Presented By: James M. G. Larkin, MD, FRCP, PhD

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.