290

Response to Lifileucel Tumor-Infiltrating Lymphocyte (TIL) Cell Therapy After ICI Resistance Regardless of Definition: An Analysis of the C-144-01 Trial in Patients With Advanced Melanoma

Amod Sarnaik,¹ Jason Chesney,² Theresa Medina,³ Omid Hamid,⁴ Sajeve Thomas,⁵ Martin Wermke,⁶ Viktoria Gontcharova,⁷ Behzad Damirchi,⁷ Joseph Dean,⁷ Emma Masteller,⁷ Xiao Wu,⁷ Wen Shi,⁷ Harriet Kluger⁸

¹H. Lee Moffitt Cancer Center, Tampa, FL, USA; ²UofL Health – Brown Cancer Center, University of Louisville, KY, USA; ³University of Louisville, KY, USA; ³University of Colorado Cancer Center, University of Colorado, FL, USA; ⁴The Angeles, CA, USA; ³University of Colorado, FL, USA; ⁴The Angeles, CA, USA; ⁶Technical University Dresden – NCT/UCC Early Clinical Trial Unit, Dresden, Germany; ⁷Iovance Biotherapeutics Inc, San Carlos, CA, USA; ⁸Yale University School of Medicine, Smilow Cancer Center, New Haven Hospital, New Haven, CT, USA

Background

- ICI are important cornerstones of the current standard of care for advanced melanoma; however, 40%–65%¹ of patients have disease that is primary resistant to ICI, and 30%–40%³⁻⁵ of patients have secondary-resistant disease using varying definitions of resistance
- Lifileucel, an investigational autologous TIL cell therapy, demonstrated encouraging activity in 153 patients with advanced melanoma who progressed after ICI and targeted therapy, if appropriate, in the C-144-01 trial, with an ORR of 31.4%⁶
- In a previous subanalysis of C-144-01, lifileucel produced an ORR of 31.3% in patients with disease primary refractory to anti–PD-1/PD-L1 therapy using the study definition⁶
- The SITC Immunotherapy Resistance Taskforce recently developed an expert-consensus definition of resistance to anti-PD-1/PD-L17
- Given the distinct mechanisms of action of TIL cell therapy and ICI, we hypothesized that subgroups identified based on resistance to anti-PD-1/PD-L1, irrespective of definition, would have similar outcomes after lifeuce TIL cell therapy

Objective

• In this post hoc analysis of the Phase 2 prospective, multicenter C-144-01 trial, we investigated outcomes in patients with disease primary-resistant or primary-refractory to prior anti-PD-1/PD-L1 treatment, with a focus on the SITC definition of resistance to anti-PD-1/PD-L1 - We also explored association of translational biology features with primary resistance to anti-PD-1/PD-L1

Methods

Figure 1. C-144-01 (NCT0236057) Study Design

rapid enrollment.

Key Endpoints

- Primary: ORR (IRC-assessed using RECIST • Secondary: DOR, PFS, OS, TEAE incidence and severity
- Key Eligibility Criteria
- ≥1 tumor lesion resectable for TIL generation $(\geq 1.5 \text{ cm in diameter})$ and $\geq 1 \text{ target tumor lesion for}$ response assessment
- Age ≥18 years at time of consent
- ECOG performance status 0–1
- No limit on number of prior therapies

Figure 2. Definitions of Primary Resistant/Refractory to Prior Anti–PD-1/PD-L1

SITC Taskforce Definition of "Primary Resistant"

- Best overall response of progressive disease (or stable disease for <6 months) to prior anti–PD-1/PD-L1
- ≥6 weeks of anti–PD-1/PD-L1 exposure
- Confirmatory scan required ≥4 weeks after initial progression

*Definition for the advanced disease setting. Additional details available in Kluger H, et al

Application of the definitions

• Primary refractory

- The first anti-PD-1/PD-L1 therapy with documented response was used in patients with multiline anti-PD-1/PD-L1
- Primary resistant
- The first anti–PD-1/PD-L1 therapy in the metastatic setting was used in patients with multiline anti-PD-1/PD-L1; for patients who received only adjuvant anti-PD-1 therapy, early relapse was considered primary resistance
- Because this analysis was performed retrospectively, criteria requiring confirmatory scans for progressior could not be applied

Methods

Assessments

- **Clinical Assessments** Response to lifileucel (ORR and DOR) was assessed by IRC (RECIST v1.1)
- **Translational Assessments** • Samples from 77 FFPE tumors resected for lifileucel manufacturing and 150 final TIL infusion products were available for testing

Results

Table 1. Baseline Characteristics

Characteristic	Primary Resistant* (n=109)	Primary Refractory (n=83)	All Patients (N=153)
Median age (range), years	56.0 (20, 79)	55.0 (20,77)	56.0 (20, 79)
Sex, n (%)			
Male	63 (57.8)	48 (57.8)	83 (54.2)
Female	46 (42.2)	35 (42.2)	70 (45.8)
Screening ECOG performance status, n (%)			
0	75 (68.8)	57 (68.7)	104 (68.0)
1	34 (31.2)	26 (31.3)	49 (32.0)
Melanoma subtype, [†] n (%)			
Cutaneous	53 (48.6)	41 (49.4)	83 (54.2)
Mucosal	11 (10.1)	10 (12.0)	12 (7.8)
Acral	10 (9.2)	6 (7.2)	10 (6.5)
BRAF V600-mutated, n (%)	32 (29.4)	25 (30.1)	41 (26.8)
PD-L1 status, [‡] n (%)			
TPS ≥1%	56 (51.4)	43 (51.8)	76 (49.7)
TPS <1%	22 (20.2)	18 (21.7)	32 (20.9)
Liver and/or brain lesions by IRC, n (%)	48 (44.0)	39 (47.0)	72 (47.1)
Median target lesion SOD (range), mm	100.4 (15.7, 552.9)	107.7 (15.7, 552.9)	101.1 (13.5, 552.9)
Baseline lesions in ≥3 anatomic sites, n (%)	75 (68.8)	60 (72.3)	109 (71.2)
Baseline target and nontarget lesions,§ n (%)			
>3	79 (72.5)	63 (75.9)	116 (75.8)
LDH, n (%)			
≤ULN	48 (44.0)	40 (48.2)	70 (45.8)
1–2 × ULN	38 (34.9)	27 (32.5)	54 (35.3)
>2 × ULN	23 (21.1)	16 (19.3)	29 (19.0)
Median number of prior therapies (range)	3.0 (1, 8)	3.0 (1, 8)	3.0 (1, 9)
*Using SITC Taskforce Criteria.7			

[†]In the overall population. 47 patients (31%) had melanoma of other subtype (including unknown primary subtype or insufficient information). [‡]In the overall population, 45 patients had missing PD-L1 status. [§]One patient in the overall population had missing data on number of baseline target and nontarget lesions.

- Patients were heavily pretreated and had high tumor burden at baseline

Table 2. Efficacy Outcomes

Characteristic	Primary Resistant* (n=109)	Primary Refractory (n=83)	All Patients (N=1 <u>5</u> 3)
ORR, n (%)	36 (33.0)	26 (31.3)	48 (31.4)
(95% CI)	(24.3, 42.7)	(21.6, 42.4)	(24.1, 39.4)
Best overall response, n (%)			
CR	8 (7.3)	7 (8.4)	9 (5.9)
PR	28 (25.7)	19 (22.9)	39 (25.5)
SD	47 (43.1)	39 (47.0)	71 (46.4)
Non-CR/non-PD [†]	1 (0.9)	1 (1.2)	1 (0.7)
PD	19 (17.4)	13 (15.7)	27 (17.6)
Nonevaluable [‡]	6 (5.5)	4 (4.8)	6 (3.9)

using the same 22-day Gen 2 process • All patients received NMA-LD, a single lifileucel

Treatment Regimen

infusion, and up to 6 doses of high-dose IL-2 Data cutoff date: 15 July 2022

Lifileucel, a cryopreserved TIL cell therapy product

was used in Cohorts 2 and 4 and manufactured

- This post hoc analysis explores outcomes in patients from Cohorts 2 and 4 classified as primary resistant or primary refractory to anti–PD-1/PD-L1 therapy
- Best overall response of progressive disease
- - C-144-01 Study Definition of "Primary Refractory"⁶
- to prior anti-PD-1/PD-L1

TCR Repertoire	TMB
 Analyzed using TCRvβ RNA sequencing data obtained from resected FFPE tumor, TIL infusion products, and PBMC uCDR3 sequences (clonotypes): contribution to the total TCR repertoire Simpson Clonality Index: values ranging from 0 (evenly distributed, polyclonal sample) to 1 (monoclonal sample) 	 Measured using the ImmunoID NeXT Platform[™] (Personalis[®]) Whole exome sequencing SNV and short indel calling: using Personalis[®]'s proprietary methods TMB was calculated based on SNVs and indels
IFNy Gene Signature	Tumor Mutations
A single gene set score for each gene set and patient calculated using the z-score method in the GSVA R package ⁸ (log ₂ [TPM counts + 1])	 Somatic SNVs and CNAs were identified by Sentieon[®], MuTect, VarDict, and Personalis[®] tools Gene variant effects were predicted using SnpEff⁹ SNVs and CNAs were filtered by variant allelic frequency, effect on protein function, and clinical impact

• Except for 1 patient, all primary refractory patients were categorized as primary resistant per SITC definition

• Baseline patient and disease characteristics were generally similar between the primary-resistant and primary-refractory groups and the overall population (Table 1)

• ORR and BOR were comparable between the primary-resistant and primary-refractory groups, and the overall population (Table 2) • Further analyses in this presentation focus on the primary-resistant population as defined by the SITC Taskforce criteria⁷

Results

target lesion SOD measuremen

• 78.6% (77/98) of patients primary resistant to anti-PD-1/PD-L1 and 79.3% (111/140) of all patients had a reduction in tumo burden (Figure 3)

Figure 4. Time to Response, DOR, and Time on Efficacy Assessment for Confirmed Responders (PR or Better), by Primary Resistance to Anti–PD-1/PD-L1*

*Using SITC Taskforce Criteria.7

• 38.9% of responses in primary-resistant patients and 35.4% of responses in all patients were ongoing as of the data cutoff (Figure 4

Table 3. DOR, by Primary Resistance to Anti–PD-1/PD-L1*

	Primary Resistant* (n=36) ⁺	All Patients (N=48) ⁺
Median DOR, [‡] months	NR	NR
95% CI	(12.5, NR)	(8.3, NR)
Min, max (months)	1.4+, 54.1+	1.4+, 54.1+
DOR ≥12 months, n (%)	21 (58.3)	26 (54.2)
DOR ≥24 months, n (%)	16 (44.4)	20 (41.7)
Median study follow-up, months	40.1	36.5
*Using SITC Taskforce Criteria. ⁷ [†] Includes sample size of responders.		

[‡]Based on Kaplan-Meier estimate

• At a median study follow up of 40.1 months, median DOR was not reached in primary-resistant patients (**Table 3**) Ongoing responses at ≥24 months were comparable between the primary-resistant patients and the overall population

Table 4. OS, by Primary Resistance to Anti–PD-1/PD-L1*

	Primary Resistant* (n=109)	All Patients (N=153)
Median OS, [†] months	14.1	13.9
95% CI	(9.7, 18.3)	(10.6, 17.8)
OS at 12 months (%)	53.3	54.0
95% CI	(43.4, 62.2)	(45.6, 61.6)
Using SITC Taskforce Criteria. ⁷ Based on Kaplan-Meier estimate.		

able	5	Safety	hv	Primary	Resistance	to A	Anti_PD-1/PD-I 1*	5
ανις	J.	Salety,	IJУ	тппату				

	Non-Hematologic TEAEs	in ≥30% of Patients (E	Either Group) ^{†,‡}		0.8
	Primary Resis	stant* (n=111)	All Patient	ts (N=156)	
Preferred Term, n (%)	Any Grade	Grade 3/4	Any Grade	Grade 3/4	
Chills	84 (75.7)	5 (4.5)	117 (75.0)	8 (5.1)	× 0.6
Pyrexia	54 (48.6)	10 (9.0)	81 (51.9)	17 (10.9)	Inde
Febrile neutropenia	48 (43.2)	48 (43.2)	65 (41.7)	65 (41.7)	lity
Hypophosphatemia	42 (37.8)	28 (25.2)	58 (37.2)	41 (26.3)	ego 0.4
Hypotension	42 (37.8)	16 (14.4)	52 (33.3)	17 (10.9)	C
Fatigue	39 (35.1)	5 (4.5)	51 (32.7)	6 (3.8)	sor
Diarrhea	35 (31.5)	2 (1.8)	48 (30.8)	2 (1.3)	E 0.2

Grade 3/4 Hematologic Lab Abnormalities [†]					
Primary Resistant* (n=111) All Patients (N=156					
Preferred Term, n (%)	Grade 3/4	Grade 3/4			
Leukopenia	111 (100)	156 (100)			
Lymphopenia	111 (100)	156 (100)			
Neutropenia	111 (100)	156 (100)			
Thrombocytopenia	103 (92.8)	147 (94.2)			
Anemia	81 (73.0)	111 (71.2)			

Jsing SITC Taskforce Criteria. [†]Per CTCAE v4.03; Safety Analysis Set

Grade 5 TEAEs included pneumonia (n=1), acute respiratory failure (n=1), arrhythmia (n=1), and intra-abdominal hemorrhage (n=1

• Median number of IL-2 doses administered was 6 in both primary-resistant and all patients

Figure 5. TMB, by Primary Resistance to Anti–PD-1/PD-L1*

• No pattern was observed in tumor mutations in primary-resistant patients (**Figure 6**)

Figure 7. IFN-γ Gene Signature, by Primary Resistance to Anti–PD-1/PD-L1*

*Using SITC Taskforce Criteria.7

All Patients

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASTCT[™] & CIBMTR[®] and the author of this poster Corresponding Author: Wen Shi (wen.shi@iovance.com)

• TEAEs were consistent with known safety profiles of NMA-LD and IL-2 and were similar in primary-resistant and all patients (Table 5)

• TMB was similar regardless of primary resistance to anti-PD-1/PD-L1 (Figure 5)

Primary resistant* No Missense Yes In-frame indel Frameshift **Response to lifileucel** Splice site Amplification Non-responder Responder Deletion X Stop-gain

• IFN-γ gene expression signature¹⁰ was similar between the primary-resistant population and all patients (Figure 7) • Other immune-related gene signatures were also analyzed, but no trend was

• The primary-resistant population had similar TCR clonality as the overall population in all samples assessed (Figure 8)

Figure 9. TCR Clonal Expansion and Persistence After Lifileucel Infusion, by Primary Resistance to Anti–PD-1/PD-L1*

*Using SITC Taskforce Criteria.

*Using SITC Taskforce Criteria.

[†]Day 42 visit.

• TIL clones expanded and persisted to a similar degree regardless of primary resistance to anti–PD-1/PD-L1 (Figure 9)

Conclusions

- In patients with advanced melanoma and prior anti-PD-1/PD-L1 therapy, response to lifileucel was not associated with primary resistance to anti–PD-1/PD-L1, regardless of definition
- Efficacy in primary-resistant patients was clinically meaningful and durable, similar to that in the overall study population
- Safety profile in patients with anti–PD-1/PD-L1 primary-resistant disease was expected and manageable and did not differ from that of the overall study population
- Translational analyses of tumor (TMB, tumor mutations, and immune-related gene signatures) and TIL infusion product (clonality, expansion, and persistence) did not reveal unique biological profiles of primary resistance
- These data are consistent with the observed potential benefit of lifileucel treatment across a broad spectrum of patients with melanoma that progressed on or after standard-of-care frontline therapy

References

- 1. Long GV, et al. *Clin Cancer Res*. 2021;27(19):5280-5288. 2. Larkin J, et al. *N Engl J Med*. 2015;373(1):23-34.
- 3. Mooradian MJ, et al. Oncology (Williston Park). 2019;33(4):141-148. 4. Hamid O, et al. *Ann Oncol*. 2019;30(4):582-588.
- 5. Wolchok JD, et al. *N Engl J Med*. 2017;377(14):1345-1356.
- 6. Chesney JA, et al. *J ImmunoTher Cancer*. 2022;10:e005755. 7. Kluger H, et al. *J Immunother Cancer*. 2020;8(1):e000398.
- 8. Cingolani P, et al. *Fly (Austin)*. 2012;6(2):80-92.
- 9. Lee E, et al. *PLOS Comput Biol*. 2008;4(11):e1000217. 10. Ayers M, et al. *J Clin Invest.* 2017;127(8):2930-2940.

Abbreviations

Acknowledgments

- The authors would like to thank the patients and their families, as well as the investigators and study site team members who are participating in the study
- The authors would also like to thank Rongsu Qi for her contributions to gene
- mutational analysis
- This study is sponsored by lovance Biotherapeutics, Inc. (San Carlos, CA) Editorial support was provided by Second City Science and funded by lovance Biotherapeutics

Disclosures

