Efficacy of Single Administration of Tumor Infiltrating Lymphocytes (TIL) in Heavily Pre-Treated Metastatic Melanoma Patients Following Checkpoint Therapy

Amod Sarnaik¹, Harriet Kluger², Jason Chesney³, Jyothi Sethuraman⁴, Michael T. Lotze⁴, Bente Larsen⁴, Igor Gorbatchevsky⁴, Nancy L. Samberg⁴, Sam Suzuki⁴, Lei Wang⁴, Mariam Mirgoli⁴, Maria Fardis⁴, Brendan Curti⁵ ¹Moffitt Cancer Center, Tampa, FL, USA; ²Yale Cancer Center, New Haven, CT, USA; ³James Graham Brown Cancer Center, Louisville, KY, USA; ⁴Lion Biotechnologies, San Carlos, CA, USA; ⁵Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA

BACKGROUND

- Adoptive cell therapy (ACT) utilizing tumor infiltrating lymphocytes (TIL) has shown consistent overall response rates of >50% in metastatic melanoma patients at the National Cancer Institute (NCI) and other institutions globally.
- Lion Biotechnologies aims to optimize and standardize manufacturing of TIL at central GMP facilities to provide TIL therapy as a potentially curative treatment to a broad group of patients with high unmet clinical need.
- The objective of the C-144-01 clinical study is to assess the safety and efficacy of autologous TIL (LN-144) for the treatment of patients with metastatic melanoma. The study includes three cohorts evaluating two manufacturing processes for LN-144:
- Cohort I receiving fresh TIL, non-cryopreserved LN-144 product
- Cohort 2 receiving TIL manufactured through a more streamlined and rapid (~3 week) process yielding a cryopreserved LN-144 product
- Cohort 3 allowing retreatment of Cohort 1 or Cohort 2 patients
- These analyses present preliminary data from the first 16 patients enrolled into Cohort I (non-cryopreserved LN-144 product) of this ongoing, multicenter Phase 2 study of TIL for patients with metastatic melanoma.

¹Goff, et al. Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma. *J Clin Oncol*. 2016 Jul 10;34(20):2389-97.

Figure 1.TIL Therapy Process

- EXTRACTION: Patient's TIL are removed from suppressive tumor microenvironment (via surgical resection of a lesion)
- EXPANSION: TIL expanded exponentially in culture with IL-2 to yield $10^9 - 10^{11}$ TIL, before infusing them into the patient
- **PREPARATION**: Patient receives NMA-LD (non-myeloablative lymphodepletion, cyclophosphamide: 60 mg/kg, IV x 2 doses and fludarabine: 25 mg/m² x 5 doses) to eliminate potentially suppressive tumor microenvironment and maximize engraftment and potency of TIL therapy
- INFUSION: Patient is infused with their expanded TIL (LN-144) and high-dose of IL-2 (600,000 IU/kg for up to 6 doses) to promote activation, proliferation, and antitumor cytolytic activity of TIL

STUDY DESIGN

Metastatic Melanoma

Metastatic Melanoma with \geq I Prior Systemic Therapy

• Key Inclusion Criteria:

- for TIL generation
- At least one prior systemic therapy
- $Age \ge 18$
- ECOG PS 0-1

• Treatment Cohorts:

- I. Non-Cryopreserved LN-144 product
- 2. Cryopreserved LN-144 product
- 3. Retreatment with LN-144 for patients without response or
- **Endpoints:**
- Primary: Safety

METHODS

- Date of data-cut: 24 Apr 2017
- All patients included in analyses were treated under Cohort I (noncryopreserved LN-144 product)
- Safety Set 16 patients as of data-cut date, who received the NMA-LD preconditioning, LN-144 infusion and at least 1 dose of IL-2
- experienced clinical/unequivocal PD prior to first assessment, following the NMA-LD preconditioning, LN-144 infusion and at least one dose of IL-2*
- Efficacy Set 14 patients had at least one efficacy assessment, died or • LN-144 product characteristics:
- Average number of TIL cells in LN-144 products infused was 41×10^9
- Average viability of LN-144 products was 88%
- Average INF γ release as determined by dynabead stimulation (CD3, CD28, CD137) was 2251 (pg/10⁶/24hrs)
- Average percent of NK cells in LN-144 products was <2%

* Two of 16 patients in Safety Set had not yet reached first tumor assessment as of data-cut date.

Phase 2, Multicenter, 3-Cohort Study to Assess the Safety and Efficacy of Autologous Tumor Infiltrating Lymphocytes (LN-144) for Treatment of Patients with

– Measurable metastatic melanoma and ≥ 1 lesion resectable

- who progress after initial response

- Secondary: Efficacy defined as ORR, CRR, PFS, DOR, and OS

RESULTS

Table 1. Patient Characteristics

CHARACTERISTIC	N=16,%	The patier	
Gender, n (%)	highly refr		
Male	7 (43.8)	prior lines	
Female	9 (56.3)	significant	
Age, n (%)		Baseline, a	
Mean (SD)	54.8 (8.44)	after at lea	
Median	54.5	inhibitor:	
Min, Max	41,72	minditor.	
Prior therapies, n (%)		 Median r 	
IL-2	2 (12.5)	therapies	
anti-CTLA-4	14 (87.5)	Median	
anti-PD-1	16 (100.0)	target le	
Baseline ECOG score, n (%)			
0	9 (56.3)	10.2 Cm	
I	7 (43.8)	• 81% of p	
BRAF Status, n (%)		disease	
Mutated	9 (56.3)		
Wild Type	7 (43.8)		
Baseline LDH (U/L)	N (%)		
I-2 times ULN	7 (43.8%)		
> 2 times ULN	l (6.25%)		
Number of Metastatic Sites at Enro	llment		
Median (range)	4 (2-11)		
> 3	64.3%		

Table 2. Treatment Emergent Serious Adverse Events

	144-01 (N=16)			
	ANY GRADE	GRADE ≥3	GRADE 5	
PREFERRED TERM (PT)	n (%)	n (%)	n (%)	
Number of subjects reporting at least one Treatment-Emergent SAE	9 (56.3)	9 (56.3)	I (6.3)	
Febrile neutropenia	4 (25.0)	4 (25.0)	0 (0.0)	
Pyrexia	l (6.3)	l (6.3)	0 (0.0)	
Systemic inflammatory response syndrome	l (6.3)	l (6.3)	0 (0.0)	
Parvovirus B19 infection*	l (6.3)	l (6.3)	l (6.3)	
Viral infection	l (6.3)	l (6.3)	0 (0.0)	
Neutrophil count decreased	3 (18.8)	3 (18.8)	0 (0.0)	
Platelet count decreased	3 (18.8)	3 (18.8)	0 (0.0)	
Blood bilirubin increased	l (6.3)	l (6.3)	0 (0.0)	
White blood cell count decreased	l (6.3)	l (6.3)	0 (0.0)	
Dehydration	l (6.3)	l (6.3)	0 (0.0)	
Myelodysplastic syndrome	l (6.3)	l (6.3)	0 (0.0)	
Confusional state	l (6.3)	0 (0.0)	0 (0.0)	
Hypoxia	l (6.3)	l (6.3)	0 (0.0)	
Hypotension	l (6.3)	l (6.3)	0 (0.0)	

Ireatment Emergent SAEs by PI.

* Not related to therapy event occurred 6 months after treatment.

e patient population was hly refractory to multiple ior lines of therapy, with nificant tumor burden at seline, and had progressed er at least one checkpoint

Median number of prior herapies: 3 (range: 1-6)

1edian Sum of Diameter for arget lesions at Baseline:

31% of patients had Stage IV

Table 3. Efficacy

RESPONSE	PATIENTS, N=14 n (%)
Objective Response Rate	4 (29%)
Disease Control Rate	9 (64%)
Complete Response	I (7%)
Partial Response	3 (21%)
Stable Disease	5 (36%)
Progressive Disease	4 (29%)
Non-Evaluable*	I (7%)

Figure 2: Efficacy

- ORR is 29%
- Tumor reduction was seen in 77% of patients representing those who had tumor reduction in the target lesions
- Responses were noted regardless of BRAF mutational status including one long lasting CR (15+ months)

- PR for one subject yet to be confirmed.

- Of 14 patients in Efficacy Set, one patient was not evaluable due to melanoma-related death prior to first tumor assessment.

Abbreviations: CR, complete response; PD, progressive disease ; PR, partial response; SD, stable disease. Data Cut: 24APR2017

Figure 3. Time to Best Response and Duration

- Mean time to first response: 1.6 months
- Median follow up for this data: 4.7 months

DISCLOSURE & FUNDING STATEMENT • This study and poster are sponsored by Lion Biotechnologies, Inc.

• JS, ML, BL, IG, NS, SS, LW, MM, and MF are employees of Lion Biotechnologies, Inc. and have stock options.

- All patients entering the study had received an anti-PD-I checkpoint inhibitor
- Median number of IL-2 administrations was 6

*In Efficacy Set I of I4 patients was not evaluable due to melanoma-related death prior to first tumor assessment.

-50 -

- This is the first time a company has manufactured TIL (LN-144) at central GMP facilities and treated patients in a multicenter clinical trial.
- Initial results indicate clinically-meaningful outcomes as assessed both by ORR and DCR in heavily pretreated patients, all with prior anti-PD-I and >80% with prior anti-CTLA-4 checkpoint inhibitors, including at least one durable complete response.
- status.
- Initial clinical responses were rapid in the majority of patients with preliminary reduction in tumors observed at the first response assessment.
- infusion.
- An upcoming protocol amendment to this study will increase the number of patients with unresectable or metastatic melanoma who have progressed after immune checkpoint inhibition therapy (e.g., anti-PD-I), and if BRAF mutation-positive, after BRAF targeted therapy.
- **Journal Editors**

LEADERSHIP & INNOVATION IN ONCOLOGY

999 Skyway Road, STE 150, San Carlos, CA 94070

For more information, please contact Dr.Amod Sarnakik: Amod.Sarnaik@moffitt.org

Figure 4. Percent Change in Sum of Diameters

Figure 5. CT Scan for Patient with CR

CONCLUSIONS

- Responses were observed in patients regardless of their BRAF mutation
- Cohort 3 in this study will allow retreatment with a second LN-144

ACKNOWLEDGMEN

- forth by the International Committee for Medical
- All listed authors meet the criteria for authorship set The authors would also like to acknowledge Anand Veerapathran, Michelle Simpson-Abelson, and Steven Fischkoff from Lion for their contributions • The authors would like to acknowledge all site team members from Moffitt Cancer Center

• The authors would like to thank the participating patients and their families for participation in the study.

(Allison Richards & Valerie Stark), Yale Cancer Center, James Graham Brown Cancer Center, and Earle A. Chiles Research Institute, Providence Cancer Center for their contributions