649 AACR ANNUAL MEETING | APRIL 1-5, 2017 | WASHINGTON, D.C., USA

Emigrant Tumor Infiltrating Lymphocytes (TIL) Profoundly Differ from Remnant T-cells

Michelle R. Simpson-Abelson, Christopher Mosychuk, Maria Fardis, and Michael T. Lotze

ABSTRACT

Adoptive T cell therapy with autologous tumor infiltrating lymphocytes (TIL) provides up to 56% objective response rates and a complete response in 24% of patients with metastatic melanoma.¹ The process of generating TIL from resected tumor involves morcellating the tumor into I-3 mm³ fragments and expanding TIL in the presence of Interleukin 2 (IL-2) in a pre-Rapid Expansion Protocol (pre-REP). During the 'pre-REP', tumor-resident immune cells emigrate (eTIL) and proliferate. The length of the pre-REP typically varies between 11-21 days, depending on cell growth. Residual tumor fragments (remnants) are discarded and the expanded eTIL are subjected to a Rapid Expansion Protocol (REP) with irradiated PBMC feeders, anti-CD3 and IL-2. Viable cells remaining in the tumor remnants (rTIL) following the pre-REP were investigated to assess their function and phenotype. We evaluated and compared the rTIL and eTIL in melanoma, breast, renal, pancreatic, lung and colorectal tumors (n=9). Tumor rTIL are consistently phenotypically distinct from eTIL, as determined by differential expression of various markers (Table I). The fundamental differences in rTIL were: Increased CD69⁺ (7 fold MFI in CD4⁺) (p<.001); diminished LAG3 (2 fold MFI in CD8) (p<.05); TIM3 (3 and 2 fold MFI in CD8 and CD4 respectively) (p < .05/.01); CD154 (3 fold MFI in CD4) (p<.01); and CD56 (5%) (p<.05). A REP of rTIL and eTIL resulted in comparable expansion. The phenotypic signature of TIL was sustained post-REP with fidelity of the individual expression of LAG3, Tim3, and CD28. These studies have identified notable differences in the biology of cell populations in terms of tissue-resident T cells and the signals associated with emigration and retention. These data provide additional insights on the individual TIL populations that could be utilized for adoptive T-cell therapy in patients and raise important questions about the nature of tissue-resident T cells in sites of chronic inflammation such as tumor.

¹Goff, et al. Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma. / Clin Oncol. 2016 Jul 10;34(20):2389-97.

Generating TIL for adoptive T-cell therapy

Figure 1. The tumor is excised from the patient and transported to the GMP Manufacturing facility. Upon arrival the tumor is fragmented and placed in G-Rex flasks with IL-2 for TIL expansion (pre-REP expansion). eTIL are cells that emigrant out of the tumor in response to IL-2. The rTIL are tumor retained cells that are isolated from a enzymatic digestion of tumor remnants. The eTIL and rTIL are cultured with feeders and OKT3 for REP expansion.

RESULTS

rTIL have reduced NK cells and phenotypically resemble a tissue-resident memory T cell

Figure 2. A) CD56, CD4⁺ and CD8⁺T cells in the eTIL and rTIL for **B)** CD69 and **C)** CD57 were assessed via flow cytometry (n=9). *P* values represent the difference between rTIL and eTIL using student's

Tumor resident remnant T-cells are phenotypically distinct from emigrating T-cells

LAG3	Tim3	PD-I	CD69	CD154	CD28	CD57	CD56
CD8/	CD8/	CD8/	CD8/	CD8/	CD8/	CD8/	
CD4	CD4	CD4	CD4	CD4	CD4	CD4	
MFI	MFI	%	MFI	MFI	MFI	%	(%)
507/ 144	2832/ 1756	36.95/ 47	320/ 543	498/ 375	63/ 5036	18.76/ 19.6	5.615
209/ 106	877/ 742	42.8/ 48	3437/ 223.4	1034/ 1167	458.3/ 2795	9.16/ 8.5	1.027
0.05/	0.05/ 0.01	0.38/ 0.89	0.11/	0.55/	0.05/	0.05/	0.05
	LAG3 CD8/ CD4 MFI 507/ 144 209/ 106	LAG3 Tim3 CD8/ CD8/ CD4 CD4 MFI MFI 507/ 2832/ 144 1756 209/ 877/ 106 877/ 742	LAG3 Tim3 PD-1 CD8/ CD8/ CD8/ CD4 CD4 CD4 MFI MFI % 507/ 2832/ 36.95/ 144 1756 47 209/ 877/ 42.8/ 106 742 48 0.05/ 0.05/ 0.38/ 0.21 0.01 0.89	LAG3 Tim3 PD-I CD69 CD8/ CD4 CD4 MFI MFI S07/ 2832/ 36.95/ 1320/ 1543 1543 20/ 1543 1543 S0/ 1543 S0/ S0/	LAG3 CD8/ CD4 MFITim3 CD8/ CD4 CD4 MFIPD-I CD8/ CD8/ CD8/ CD4 CD4 %CD69 CD8/ CD8/ CD4 CD4 MFI507/ 1442832/ 175636.95/ 471320/ 15431498/ 3751209/ 106877/ 74242.8/ 483437/ 223.41034/ 11670.05/ 0.210.05/ 0.010.38/ 0.890.11/ 0.0010.55/ 0.01	LAG3 Tim3 PD-1 CD69 CD154 CD28 CD8/ CD4 CD4 CD4 CD4/ CD4/	LAG3 Tim3 PD-1 CD69 CD154 CD28 CD57 CD8/ CD4 CD4 CD4 CD4/ CD4/

Table I. eTIL/ rTIL pairs derived from melanoma, breast, renal, pancreatic, lung and colorectal tumors (n=9) were assessed phenotypically, using flow cytometry post pre-REP. *P-values represent the difference between rTIL and eTIL using student's unpaired T test.

rTIL demonstrate a less exhausted phenotype compared to eTIL

rTIL have greater metabolic capacity than eTIL

Figure 4. CD4⁺ and CD8⁺ normal donor peripheral blood lymphocytes (PBL) and pre-REP eTIL and rTIL were stained with A) 2-NBDG to assess glucose uptake and **B**) mitotracker to assess mitochondria mass. The cells were evaluated using flow cytometry (n=5-7). *P* values represent the difference between the rTIL and eTIL using student's unpaired T test; *p<0.05, **p<0.01

Enhanced production of IFN γ in CD4⁺ T cells of rTIL

Figure 5. eTIL and rTIL were stimulated with α CD3/ α CD28/ α 41BB beads with Brefeldin overnight or PMA/Ionomycin for 4-5 hours. IFN γ in the CD4⁺ and CD8⁺ cells were assessed by intracellular flow cytometric analysis (n=3).

Figure 6. eTIL and rTIL were subjected to a rapid expansion protocol (REP) with irradiated PBMC feeders, anti-CD3 (OKT3) and IL-2 for 14 days. Viability and cells counts were assessed in duplicate (n=4). LAG3⁺ and TIM3 were assessed by flow cytometry.

SUMMARY

LEADERSHIP & INNOVATION IN ONCOLOGY

999 Skyway Road, STE 150, San Carlos, CA 94070

For more information, please contact Michelle.Abelson@lionbio.com

• Viable cells (both T-cells and other immune cells) can be isolated from tumor remnants post pre-REP cultures (**II-2Id**).

• Emigrant (eTIL) and remnant T-cells (rTIL) are phenotypically distinct.

• rTIL are more indicative of a resident memory T-cell, and have reduced expression of exhaustion markers (i.e., LAG3⁺, TIM3), compared to eTIL.

• rTIL have enhanced metabolic capacity and IFN γ production, compared to eTIL.

• rTIL can be expanded during the REP using OKT3 and feeders, and retain a robust phenotypic signature similar to the pre-REP, but differential expression pattern compared to eTIL.

• Experiments are currently investigating the pre-clinical and clinical implications of rTIL for adoptive T-cell therapy.