Successful generation of tumor-infiltrating lymphocytes (TIL) for adoptive cell therapy from mesothelioma

¹University of Leicester, Leicester, UK; ²University Hospitals of Leicester NHS Trust, Leicester, UK; ³Iovance Biotherapeutics, Inc., San Carlos, CA, USA

Background

- Patients diagnosed with mesothelioma have a poor prognosis with a median overall survival of ~18 months
- First-line standard of care for patients diagnosed with mesothelioma is immune checkpoint inhibitor (ICI) therapy using ipilimumab and nivolumab¹ followed by a second-line of care using systemic platinum-based chemotherapy Often, patients progress within 7 months of receiving these treatments
- Adoptive cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TIL) allows for expansion of T cells from tumor tissue, leading to a polyclonal T-cell product with a diverse T-cell receptor (TCR) repertoire capable of recognizing an array of patient-specific tumor neoantigens
- TIL cell therapy has shown efficacy (including complete responses) in other solid tumor indications²⁻⁴ and may be a viable treatment option in this setting
- Here, we describe the successful generation of TIL product from mesotheliomas and subsequent phenotypic and functional characterization of the TIL

Methods

Manufacturing

- A small-scale 22-day manufacturing process was used, including pre-rapid expansion protocol (pre-REP) and rapid expansion protocol (REP) for the generation of TIL from mesotheliomas (Figure 1)
- During pre-REP (1/10th scale), tumor fragments were placed in media containing IL-2 for 11 days and TIL migrated from the tumor tissue

- To further stimulate TIL growth, cells were expanded using REP (1/50th scale) that included irradiated peripheral blood mononuclear cells (iPBMC), IL-2, and anti-CD3 for 11 days

- Final TIL product was characterized to determine whether acceptance criteria were met for the following attributes Total viable cells (TVC), purity (% viability), identity (%CD45⁺CD3⁺), activity (IFN-γ), and extended phenotyping using multicolor flow cytometry

Figure 1. TIL Product Manufacturing for Autologous TIL Cell Therapy

^aIn this analysis, TIL manufacturing was performed in a development laboratory. ^bStep was not performed in this analysis because patients did not undergo TIL infusion.

Product Release

- Final TIL product was characterized for
- Total viable cells (TVC) and purity (% viability), determined by acridine orange/4',6-diamidino-2-phenylindole (DAPI) counterstain using the NucleoCounter[®] NC-200[™] (ChemoMetec, Lillerød, Denmark) automated cell counter
- Identity (%CD45⁺CD3⁺ phenotype), assayed by immunofluorescence staining and flow cytometry
- Activity (interferon-γ [IFNγ] release), assayed by ELISA using the Quantikine® IFNγ ELISA kit (R&D Systems, Minneapolis, MN, USA)

Phenotype

• Final TIL products were assayed for extended phenotypic markers using a multicolor flow cytometry panel to characterize TIL purity, identity, memory subset, activation, and exhaustion status

Statistical Analysis

• Unpaired Student t-test was used to analyze differences in phenotype; p < 0.05 was considered statistically significant

Dean A Fennell,¹ Charlotte Poile,¹ Aleksandra Bzura,¹ Joanna Dzialo,¹ Apostolos Nakas,² Kudzayi Kutywayo,² Arvind Natarajan,³ Courtney Herman,³ Ryan Kovatch,³ Brittany Bunch,³ and Anand Veerapathran³

Results

Table 1. Patient Baseline Demographics and Tumor Characteristics						
Characteristic	N = 6					
Median age, years (range)	69 (55–83)					
Sex, (n) %						
Male	5 (83)					
Histology, n (%)						
Mesothelioma	6 (100)					
Tumor site, n (%)						
Left pleura	3 (50)					
Right pleura	3 (50)					

Table 2 Summary of Product Attributes

Tumor ID	Histology	Tumor	Tissue Type	Treatment History	Acceptance Criteria	TVC (x10 ⁹)	Viability (%)	CD45⁺ CD3⁺ (%)	CD4+ (%)	CD8⁺ (%)
ME18002	Epithelial Mesothelioma	L Pleura	Lung	None	Met	79.7	96.5	98.9	74.5	23.3
ME18003	Epithelial Mesothelioma	R Pleura	Lung	None	Met	45.9	74.5	96.4	22.6	71.8
ME18004	Mesothelioma	R Pleura	Lung	None	Met	79.6	97.0	99.0	75.7	19.9
ME18006	Mesothelioma	R Pleura	Lung	None	Not Met	0.5	85.7	*	*	*
ME18007	Epithelioid Malignant Mesothelioma	L Pleura	Lung	None	Met	53.4	91.8	97.5	93.7	4.0
ME18008	Epithelial Mesothelioma	L Pleura	Lung	None	Met	42.8	88.3	98.8	7.5	90.7

*Product failed to meet criteria for TVC. Not available for testing

• Final TIL products met acceptance criteria for 5 of the 6 tumor samples (83%)

- Median (range) TVC was 53.4×10^9 cells/mL ($42.8 \times 10^9 - 79.7 \times 10^9$ cells/mL) for passing lots (**Figure 2A**)

– Median (range) purity was 90.1% (74.5–97.0%) for passing lots (**Figure 2B**)

– Median (range) identity phenotype was 98.8% (96.4–99.0%) for passing lots (**Figure 2C**)

Figure 2. Viable Cell Dose, Purity, and Identity

criteria on Day 22. Median (range) are displayed. Red dotted line indicates Day 22 acceptance criteria.

*Corresponds to sample that did not meet TVC on Day 22.

Conclusions

- mesothelioma

Abbreviations

DAPI, 4',6-diamidino-2-phenylindole; ICI immune-checkpoint inhibitors: IFN, interferor IL-2, interleukin-2; Gen, generation; GMP, good manufacturing practice; NK, natural killer; PBMC, peripheral blood mononuclea cell; REP, rapid expansion protocol; TCM, central memory T-cells: TCR. T-cell receptor TEM. effector memory T-cells; TEMRA effector memory RA⁺ T cells; TIL, tumorinfiltrating lymphocytes; TN, naïve T-cells; TVC, total viable cells.

R	E
1.	
2.	
3.	(
	(
4.	
5.	

NHR Leicester Biomedical Research Centre

otained through QR (Quic

• 5 of 6 final TIL products (83%) manufactured from mesotheliomas showed acceptable TIL product attributes • Median yield of TIL from the 5 tumors on Day 11 was 41 × 10⁶ and on Day 22 was 53 × 10⁹ viable cells • TIL generated from mesotheliomas using a 22-day (Gen 2) manufacturing process showed acceptable TIL product attributes and were generally comparable in function and phenotype to TIL generated from other tumor types • These feasibility data suggest that viable TIL can be successfully expanded from mesothelioma tumor tissue

• This manufacturing process can be used to support potential clinical investigation of TIL cell therapy in patients with

eferences

Baas P. et al. Lancet. 2021:397:375-386. Sarnaik A, et al. Presented at: 2022 SITC Annual Meeting. November 8–12, 2022: Boston, MA. Abstract 789.

- Chesney J, et al. *J Immunother Cancer*. 2022;10: Schoenfeld AJ, et al. Presented at: 2021 SITC Annual Meeting. November 10–14, 2021: Washington, DC.
- bstract 458. Simpson-Abelson MR, et al. Presented at: 2020 ESMO
- Annual Meeting. September 19-21, 2020: Virtual. Abstract 1053P.

Acknowledgments

- The authors would like to thank the participating patients and their families for donation of material used in this study
- This study was sponsored by lovance Biotherapeutics, Inc. (San Carlos, CA, USA) Editorial support was provided by Peloton Advantage, LLC, an OPEN Health company, and funded by lovance

Disclosures

- · All authors meet the criteria for authorship set forth by the International Committee of Medical Journal Editors
- AN, CH, RK, BB, and AV are current or former employees of lovance and may have stock and/or stock options